

SmartyGrants Analytics

Technical Documentation
Version 1.3

SmartyGrants Version 8.26.25
21 November 2024

Table of Contents

1 Using This Guide ... 3

2 Definitions ... 3

3 Interpreting the Data Model ... 3

4 Data Model Diagram... 4

5 Designing a Widget: Steps .. 5

6 Designing a Widget: Worked Examples ... 6

7 Widget Design Troubleshooting/FAQs.. 10

8 The Key Table .. 12

9 Entity Tables .. 14

10 Limit Tables .. 15

11 Financial Reporting .. 18

12 Financial Reporting: Worked Examples .. 21

13 Financial Reporting: Troubleshooting/FAQs ... 22

14 Dynamic Tables .. 23

15 Forms .. 24

16 Standard Fields ... 29

17 Smart Choice Standard Fields .. 34

18 Standard Sections ... 37

19 Dynamic Tables: Troubleshooting/FAQs ... 40

20 Outcomes Engine Reporting .. 43

21 CLASSIE.. 49

OurCommunity.com.au – where not-for-profits go for help

Page | 3

1 Using This Guide
This document contains an in-depth breakdown of the data model used in
SmartyGrants Analytics.

 Users seeking a quick guide to combining fields in a widget can skip to the section
“Designing a Widget.”

 Other sections can be referred to for the “why” behind the guidelines contained in
“Designing a Widget.”

2 Definitions
 Definition Examples
Entity An object or concept in SmartyGrants An application
Key A unique ID which identifies an entity. Every application has a unique

application_id
Key
Combination

The combination of an entity’s key
with the keys of other entities that it is
“nested” under or belongs to. The
supplied data model diagram provides
the key combination of all entities.

An application belongs to a
round, which belongs to a
program, which belongs to an
instance. The key combination
for an application is
Application ID, Round ID,
Program ID, Instance ID

Permutation A “real” case of a key combination,
made up of IDs assigned in the
SmartyGrants database

A permutation of an
application key combination
could be {APPID01,
ROUNDID01, PROGRAMID01,
INSTANCEID01}

Widget
query

The code that SmartyGrants Analytics
runs in the background to build a
widget

-

3 Interpreting the Data Model
Black tables Entity tables, the top half of boxes

contain a key
Coloured tables Limit Tables, the top half of boxes

contain a key combination
White tables Dynamic tables. There may be

multiple of each table represented in
the data model (e.g. several “Standard
Fields” tables if an instance has several
standard field categories).

{} indicates a dynamic table name. For
example, {Category Name} Standard
Fields is the naming convention for
standard field tables. If an instance
contains a category called “Volunteer
Information”, the corresponding table
would be Volunteer Information
(Standard Fields)

Greyed out fields Fields hidden from the user

OurCommunity.com.au – where not-for-profits go for help

Page | 4

4 Data Model Diagram

OurCommunity.com.au – where not-for-profits go for help

Page | 5

5 Designing a Widget: Steps
Not all tables in SmartyGrants Analytics can be used together in a widget. In some cases,
the relationship between tables may mean no results will display. In other cases, the tool
will allow users to use multiple tables in a widget, but without an appropriate filter, results
may not be as expected. To design a widget correctly, follow the three steps below. In the
next section, these steps are demonstrated in three worked examples of increasing
complexity.

1. Find the tables containing the fields you will use

Fields in the data model are organised around entities, which are objects or concepts in
SmartyGrants such as an application, round, program or budget. For guidance on how
fields related to financial reporting are split between the application, payment, funding
allocation and budget tables, refer to the section “Financial Reporting.”. To check the
definitions of fields, refer to the data dictionary.

2. Check it is possible to combine these tables in a single widget

Once you have determined the tables you will use in your widget, check
they can be combined in a single widget through the following rules.
These rules reference the key and key combination of tables, found in the
top half of tables in the data model diagram.

 Rule Examples

Combining
more than
one entity
table

Fields from two different entity tables
can be used together in a widget if:

• there is a limit table whose key
combination contains the keys of
both entities

• OR both entity tables share the
same key

Fields in the Program table
can be used to group fields
in the Round table because
Program ID and Round ID
are both used in the key
combination of the Round
(Limit) table: {Instance ID,
Program ID, Round ID}.

Combining
entity and
limit tables

Fields in limit tables can be grouped by:

• fields in any entity table whose
key is contained in the limit
table’s key combination

• fields within the same limit table.

Fields in the Payment table
can be grouped by fields in
the Application table
because Application ID is
used in the key
combination of the
Payment table.

3. Select a Limit To filter

bookmark://financialreporting/

OurCommunity.com.au – where not-for-profits go for help

Page | 6

Every widget requires a “Limit to
<entity>” field from a limit table applied
as a widget filter. For an explanation of
why this filter is needed, see the section
“Limit Tables.”

To select the correct “limit to” filter,
consider the entity being described by
the field that the widget is aggregating
(i.e. summing, counting). The entity
being described is usually in the name
of the table that the field comes from.
For example, if a widget is summing

“Original Amount Approved” from the Application Table, select “Limit to Application” for
the widget filter.

Note

A “Limit to” filter can affect the tables which can be used in the widget. This is because
a limit table can only be used in a widget with tables whose key/key combinations are
contained in its key combination. After selecting a “Limit to” filter, it may be necessary
to return to Step 2 and reconsider whether tables can be used in the widget. See the
section “Widget design troubleshooting/FAQs” for an example.

To apply a “limit to” field as a widget filter, set it to include values equalling 1. When
setting a filter to equal 1, select List and click the nine-dot icon.

6 Designing a Widget: Worked Examples

“I would like to find, for each round, the average funding allocation amount given to
an application.”

Step Reasoning

Step 1: Find the tables
containing the fields you will
use

This widget would average the field “Allocation
Amount” in Funding Allocation table. It would then
split this data by “Round Name” in the Round table.

Step 2: Check it is possible to
combine these tables in a
single widget

This widget would combine multiple entity tables.
Fields from two different entity tables can be used
together in a widget if there is a limit table whose key
combination contains the keys of both entity tables.

OurCommunity.com.au – where not-for-profits go for help

Page | 7

The key of the Funding Allocation table is Funding
Allocation ID. The key of the Round table is Round ID.
There is a limit table whose key combination contains
both these ids, such as the key combination of
Funding Allocation (Limit). This means Funding
Allocation and Round tables can be used in a single
widget.

Step 3: Select a Limit To filter This widget is averaging “Allocation Amount,” a field
that gives information about funding allocations. Apply
“Limit to Funding Allocation” from the Funding
Allocation (Limit) table as a widget filter.

“I would like to sum the total amount paid to applications from each program.”

Data about individual payments is contained in the Payments table, while the Application
Financials table records the sum of payments made to each application in the field
“Application Total Amount Paid.” Both tables could be used to produce the same analysis.

Using Application Financials table:

Step Reasoning

Step 1: Find the tables
containing the fields you will
use

The widget will sum “Application Total Amount Paid”
from the Application Financials table. The widget
would split that data by “Program Name” from the
Program table.

Step 2: Check it is possible to
combine these tables in a
single widget

This widget would combine multiple entity tables.
Fields from two different entity tables can be used
together in a widget if there is a limit table whose key
combination contains the keys of both entity tables.

The key of the Application Financials table is
Application ID. The key of Program table is Program ID.

There is a limit table whose key combination contains
both these ids, such as the key combination of
Application (Limit). This means Program and
Application tables can be used in a single widget.

OurCommunity.com.au – where not-for-profits go for help

Page | 8

Step 3: Select a Limit To filter This widget is aggregating “Application Total Amount
Paid,” a field that gives information about applications.
Apply “Limit to Application” from the Application
(Limit) table as a widget filter.

Using Payment table:

Step Reasoning

Step 1: Find the tables
containing the fields you will
use

The widget will sum Amount Paid from the Payment
table. The widget would split (group) that data by
“Program Name” from the Program table.

Step 2: Check it is possible to
combine these tables in a
single widget

This widget would group a field in a limit table by a
field in an entity table. Fields in limit tables can be
grouped by fields in any entity table whose entity key
is contained in the limit table’s key combination.

The key of Program table is Program ID. The Payment
table is a limit table whose key combination uses
Program ID. This means Payment and Application
tables can be used in a single widget.

Step 3: Select a Limit To filter This widget is aggregating “Amount Paid,” a field that
gives information about payments. Apply “Limit to
Payment” from the Payment table as a widget filter.

“I would like to sum the total amount paid to applications from each program, broken
down further by the budgets the funding came from.”

The previous example with a budget-related reporting requirement.

OurCommunity.com.au – where not-for-profits go for help

Page | 9

Step Reasoning

Step 1: Find the tables
containing the fields you will
use

The widget would split (group) payments by “Program
Name” from the Program table AND “Budget Name”
from Budget table.

Data about individual payments is contained in the
Payments table, while the Application Financials table
records the sum of payments made to each
application in the field “Application Total Amount
Paid.” However, an application may receive payments
from multiple budgets. This means that summing
“Application Total Amount Paid” by budget may lead
to inflated numbers. The Application Financials table is
not suitable for this analysis, which is reflected by the
data model not allowing a user to use the Budget table
with a Limit to Application filter (see next step.)

Step 2: Check it is possible to
combine these tables in a
single widget

&

Step 3: Select a “Limit to” filter

As shown in the previous example, it is possible to
combine “Application Total Amount Paid” from the
Application Financials Table and “Name” from the
Program table in a widget, with “Limit to Application”
set as a widget filter. However, Limit to Application can
not be combined with fields from the Budget table,
because the key of Budget table (Budget Period ID) is
not contained in the key combination of Application
(Limit).

Budget Period ID is contained in the key combination
of Payment (meaning “Amount Paid” from Payment
table can be grouped by “Name” in the Budget Table.)
Payment can be combined with Program table also.
For this reporting example then, it makes sense to
aggregate “Amount Paid” from the Payments table
and apply “Limit to Payment” as the widget filter.

“I would like a list of applications that have received a funding allocation from each
budget.”

Step Reasoning

OurCommunity.com.au – where not-for-profits go for help

Page | 10

Step 1: Find the tables
containing the fields you will
use

This widget will provide a list of Database Application
IDs, from the Application table. This list will be split by
Budget Name from the Budget table.

Step 2: Check it is possible to
combine these tables in a
single widget

This widget would combine multiple entity tables.
Fields from two different entity tables can be used
together in a widget if there is a limit table whose key
combination contains the keys of both entity tables.

They key of the Application table is Application ID. The
key of the Budget table is Budget Period ID. There is a
limit table whose key combination contains both these
ids, such as the key combination of Funding Allocation
(Limit). This means Application and Budget tables can
be used in a single widget.

Step 3: Select a Limit To filter Even though Database Application ID comes from
Application table, creating a list of applications that
have received a funding allocation technically involves
listing the Application IDs of funding allocations. Select
Limit to Funding Allocation from Funding Allocation
(Limit) as the widget filter.

Note that selecting Limit to Payment from the
Payment table as the widget filter would return
applications that have received a payment.

7 Widget Design Troubleshooting/FAQs
If you have a question about designing a widget that is not contained in this list of FAQs,
it is recommended to read the ensuing sections of this document which explain the data
model in close detail.

Why does a widget show no results when I add a field? I know that data has been
collected for that field.

OurCommunity.com.au – where not-for-profits go for help

Page | 11

If a widget shows No Results, it is likely the combination of fields in the widget violates the
rules for combining tables in a widget. In most cases, this result indicates a combination
of fields that does not make logical sense.

For example, the widget in the image above combines “Unsubmitted Application ID”
from the Unsubmitted Application table and “Allocation Amount” from the Funding
Allocation table. Since unsubmitted applications should never have funding allocations
(as they have not been approved for funding), it does not make logical sense to combine
these fields.

That these fields cannot be logically combined is reflected in the rules for combining
tables in a widget, whereby an entity table’s key is contained in the key combination of
any limit table it can be combined with. Funding Allocation ID is not contained in the key
combination of Unsubmitted Application.

Why are some (but not all) columns always coming up as blank or N/A in a widget? I
know that data has been collected for that field.

If some (but not all columns) come up as blank in a widget, those fields likely come from
tables whose key/ key combination are not contained in the key combination of the Limit
table you have used for the widget filter (see the note in the section on selecting “Limit to”
filters). This usually occurs when the widget is aggregating a field describing an entity and
you drag in a field describing another entity that the first entity is not nested under.

In the example above, the widget is summing “Allocation Amount” from the Funding
Allocation table, meaning that “Limit to Funding Allocation” from the Funding Allocation
(Limit) is applied as a widget filter. When “Amount” from the Payment table is added to
the widget, all rows appear blank. This is because funding allocations do not come from
payments, but the other way around. Payee ID (which appears in the key combination of
the Payment table) does not appear in the key combination of Funding Allocation (Limit),
which means fields from Payment table cannot be used with the Limit to Funding
Allocation widget filter.

OurCommunity.com.au – where not-for-profits go for help

Page | 12

What should I do if the data model does not allow me to use fields together in a
widget?

As explained in the first FAQ, if the fields you are trying to combine in a widget violate the
rules for combining tables, this may indicate you have chosen a combination of fields that
does not make logical sense. Otherwise, there may be a way to produce the analysis you
have in mind through a combination of fields from other tables.

As explained further in the section on financial reporting, financial data is pre-aggregated
at different levels in the Application, Funding Allocation, Payment and Budget tables. For
example, individual payments are recorded in the Payment table. Payments are grouped
by application in the Application Financials table and grouped by budget in the Budget
table. This pre-aggregation maximises flexibility for the kind of financial reporting that is
possible in SmartyGrants Analytics.

For example, the previous FAQ showed it was not possible to show the total amount paid
and allocated to applications in each round by using the Payment and Funding Allocation
tables together. However, it is possible to produce this analysis by using fields from the
Application Financials table.

See here for another example of troubleshooting by using a different combination of
tables.

8 The Key Table

Why does the data model need the key
table?

The key table, hidden from the end user,
facilitates security filtering so that users only
see data from instances they have access to.
Every table in the data model is connected to
the key table. Security filtering limits the
Instance table to only relevant instance IDs and
flows through to every other table via the key
table.

What is in the key table?

The key table contains seven columns, which are the seven keys: Application ID, Round ID,
Program ID, Instance ID, Budget Period ID, Funding Allocation ID and Payee ID)

OurCommunity.com.au – where not-for-profits go for help

Page | 13

The key table contains all actual permutations of every key combination (with irrelevant
keys in a key combination always set to -1.) Consider the following data from
SmartyGrants.

The key combination for application is Application ID, Round ID, Program ID and Instance
ID (key combinations are recorded in the data model diagram.) The application would
appear in the key table with these IDs populated and all other IDs left as “-1”:

Application ID Round ID Program ID Instance ID Budget ID Funding
Allocation ID

Payee ID

APPID01 ROUID01 PROID01 INSID01 -1 -1 -1

APPID01 has one funding allocation. They key combination for funding allocation is
Application ID, Round ID, Program ID, Instance ID, Budget Period ID and Funding
Allocation ID. The funding allocation would appear in the key table with these IDs
populated and all other IDs left as “-1”:

Application ID Round ID Program ID Instance ID Budget ID Funding
Allocation ID

Payee ID

APPID01 ROUID01 PROID01 INSID01 -1 -1 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNDID01 -1

APPID01 has also received one payment. Since the payment key combination uses all
seven IDs, the payment would appear in the key table with all IDs populated:

Application ID Round ID Program ID Instance ID Budget ID Funding
Allocation ID

Payee ID

APPID01 ROUID01 PROID01 INSID01 -1 -1 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 PAYID01

Every “real” instance of an entity has a row corresponding to it in the key table. Storing
key combinations in the key table allows us to group and slice entities by fields associated
with each ID, which are contained in other tables joined to the key table.

OurCommunity.com.au – where not-for-profits go for help

Page | 14

9 Entity Tables
Entity tables contain fields related to an object or concept in SmartyGrants. For example,
the Application table contains the fields “Current Stage” and “Decision Date”, with this
data organised in rows by the key, Application ID.

Application ID Current Stage Decision Date

APPID01 Evaluation 3/3/2024

The Funding Allocation table contains the fields “Allocation Amount” and “Conditional
Flag”, with this data organised in rows by the key, Funding Allocation ID (some keys such
as Funding Allocation ID have been hidden from the end user).

Funding Allocation ID Allocation Amount Conditional Flag

FUNDID01 $5000 Yes

Entity tables are connected to the key table by their key, allowing us to connect and
group data across entities. Recall in our example that the key table contains all key
combination permutations of applications and funding allocations (for now, disregard the
row in the key table representing the payment):

Application ID Round ID Program ID Instance ID Budget ID Funding
Allocation ID

Payee ID

APPID01 ROUID01 PROID01 INSID01 -1 -1 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 -1

Imagine that we select the fields
“Application ID” and “Allocation
Amount” in the widget builder to
find the funding allocation
amounts associated with each
application.

In the background, the widget
builder performs the following
steps:

Step Result

(1) Selection of a field from the
Application table prompts widget
builder to creates a list of
Application IDs from that table

APPID01

(2) Creates a join to the key table on
Application ID, and then finds
Funding Allocation IDs associated
with each Application ID.

APPID01 is joined to FUNDID01 because
there is a row containing these two IDs.

OurCommunity.com.au – where not-for-profits go for help

Page | 15

(3) Creates a join to the Funding
Allocation table on the Funding
Allocation IDs.

In the Funding Allocation table, FUNID01
has Allocation amount of $5000. The
widget builder connects the funding
amount of $5000 to APPID01.

10 Limit Tables

What is in a limit table?

Like the key table, all limit tables contain the seven keys as columns, plus an additional
field “Limit to <entity>”. For rows, each limit table contains all key combination
permutations for the entity in its name (the key table is essentially a union of the seven ID
columns across all limit tables.) The “Limit to <entity>” column is set to 1 for every row.

In our example, the Limit to Funding Allocation table would have the key combination
permutation of the funding allocations in the key table, with an additional column set to
“1”:

Application
ID

Round ID Program
ID

Instance ID Budget
ID

Funding
Allocation
ID

Payee ID Limit to
Funding
Allocation

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 -1 1

Whereas entity tables are linked to the key table by a single key, limit tables are linked to
the key table by all seven ID columns.

Why do some limit tables contain extra fields?

Some tables contain additional fields on top of the “Limit to” field. These tables refer to
entities which cannot logically group any other entity, either because:

 No entity is nested under it (as in the case of Payment, which comes from a
Funding Allocation, which comes from a Budget. Nothing “comes from” a
Payment.)

 The entity is a historical event (as in the case of Round Approval, which contains
both past and present round approval decisions)

Fields from these tables can be used in widgets with fields from the same table or can
be grouped by fields from certain entity tables.

Why do we need Limit Tables?

Limit Tables allow the user to ensure widgets form the correct links between entities.
Recall that:

 The key table contains all actual permutations of every key combination.

 There are overlapping keys across key combinations. For example, Application ID is
used both in the key combination of Payment and the key combination of
Funding Allocation.

OurCommunity.com.au – where not-for-profits go for help

Page | 16

When a widget uses a table whose key is used in the key combinations of multiple
entities, the widget query can form unexpected links between entities, leading to
duplication.

Let’s return to the example above where we selected the fields “Application ID” and
“Allocation Amount” in the widget builder to find the funding allocation amounts
associated with each application. You may have noticed that there are two rows
associated with APPID01, each with allocation amount $5000.

If we convert the widget type to a pivot table, this aggregates to $10,000. APPID01 has
only one funding allocation, worth $5000, so some duplication is occurring.

The duplication occurs because the key table contains the key combinations of both
payments and funding allocations. They key combinations of both these entities use
Application ID and Funding Allocation ID. When the widget query makes joins to the key
table on these keys, the join captures rows associated with both payment and funding
allocations.

Application ID Round ID Program ID Instance ID Budget ID Funding
Allocation ID

Payee ID

APPID01 ROUID01 PROID01 INSID01 -1 -1 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 -1

APPID01 ROUID01 PROID01 INSID01 BUDID01 FUNID01 PAYID01

This duplication is documented in further detail at each step of the widget query:

Step Result

(1) Selection of a field from the
Application table prompts widget
builder to creates a list of
Application IDs from that table

APPID01

OurCommunity.com.au – where not-for-profits go for help

Page | 17

(2) Creates a join to the key table on
Application ID, and then finds
Funding Allocation IDs associated
with each Application ID.

APPID01 is joined to FUNDID01 in two
rows because there are two rows with
APPID01 and FUNID01. One of these rows
is associated with a funding allocation. The
other is associated with a payment.

(3) Creates a join to the Funding
Allocation table on the Funding
Allocation IDs.

In the Funding Allocation table, FUNDID01
has Allocation amount of $5000. The
widget builder connects the funding
amount of $5000 to APPID01 in both rows
containing APPID01 and FUNDID01.

By making use of the limit tables, a user can ensure the widget query forms the correct
link between entities, eliminating duplication.

How do Limit To filters work?

Limit Tables work by reducing the key table to the key combination permutations of a
single entity. To use a limit table, consider which entity is being described by the field your
widget is aggregating. In most cases the entity can be identified by the name of the table
from which you have selected a field to count/sum/average etc. Then apply the “Limit to”
field from the limit table of that entity as a widget filter, set to include only the value “1”.

The “Limit to” filter affects the widget query by creating an additional join between the
limit table and the key table that only keeps key combination permutations matching
those from the limit table used in the filter (reducing the key combination permutations
used in the widget query to those of a single entity.) This overcomes the problem of
widget queries forming unexpected links between entities.

In our example, we are summing funding allocation amounts and so would apply the
Limit to Funding Allocation field from the Funding Allocation (Limit) table as a widget
filter. The deduplication effect can be stepped out:

Step Example

(1) Selection of a field from the
Application table prompts widget
builder to creates a list of
Application IDs from that table

APPID01

(2) Widget filter of “Limit to Funding
Allocation = 1” creates a join from
the Funding Allocation (Limit) table
to the key table on all seven ID
columns

Every row in the Funding Allocation (Limit)
table has Limit to Funding Allocation set
to “1”, and those rows also have Payee ID
set to "-1.” The join to the key table
therefore only preserves rows with Payee
ID set to “-1” (and matching the key
combination permutations in Funding

OurCommunity.com.au – where not-for-profits go for help

Page | 18

Allocation (Limit) table). The row in the key
table associated with a payment is
omitted from the join.

(3) Creates a join from Application
table to the key table on
Application ID, and then finds
Funding Allocation IDs associated
with each Application ID.

APPID01 is joined to FUNID01 in only one
row with both APPID01 and FUNID01. This
row is associated with a funding
allocation.

(4) Creates a join to the Funding
Allocation table on the Funding
Allocation IDs.

In the Funding Allocation table, FUNID01
has Allocation amount of $5000. The
widget builder connects the funding
amount of $5000 to APPID01.

11 Financial Reporting
In the data model, financial data is pre-aggregated at different levels in the Application,
Funding Allocation, Payment and Budget tables. For example, individual payments are
recorded in the Payment table. Payments are grouped by application in the Application
Financials table and grouped by budget in the Budget table.

The relationship between fields in these four tables is summarised in the image below,
where “derived” means a field aggregates data collected at a different level. For example,
“Application Total Amount Approved” sums all “Amount Approved” (approved payments)
attached to an application. “Budget Total Amount Approved” sums all “Amount
Approved” (approved payments) attached to a budget.

This pre-aggregation maximises flexibility for the kind of financial reporting that is
possible in SmartyGrants Analytics. To use these tables effectively, you should have a firm
understanding of how funding is administered in SmartyGrants (or refer to the “Funding
and Payments” page on the Help Hub).

https://help.smartygrants.com.au/using-smartygrants/funding-and-payments/
https://help.smartygrants.com.au/using-smartygrants/funding-and-payments/

OurCommunity.com.au – where not-for-profits go for help

Page | 19

Payment table

The Payments table contains data around
individual payments (i.e. one row per payment),
similar to the Payments page in SmartyGrants.
Applications can receive multiple payments,
which are separated out into different rows in this
table.

Note that the Payments table contains payments
of all statuses (e.g. scheduled, approved, returned,

paid.) When using this table, you may need to filter by status or use the “amount”
columns which have been pre-filtered (e.g. “Amount Scheduled”, “Amount Approved”
columns).

 Funding Allocation table

The Funding Allocation table contains data around
funding allocations (i.e. one row per funding
allocation). Applications can receive multiple
funding allocation, which are separated out into
different rows in this table.

Data in the Funding Allocation table can be
matched to the “Decision Tab” of applications.

OurCommunity.com.au – where not-for-profits go for help

Page | 20

Application Financials table

The Application Financials table records the sums of payments/funding allocations to
each application (i.e. one row per application). It allows us to see the total payments and
allocations attached to each application quickly.

In the previous image, we saw that CDG02014
received two funding allocations of $5000
which were stored in two separate rows in the
Funding Allocation table. In the Application
Financials table, CDG02014 has “Application
Total Amount Allocated” of $10,000.

Data in the Application Financials table can be matched to right-hand summary column
of applications in SmartyGrants.

OurCommunity.com.au – where not-for-profits go for help

Page | 21

Budget table

The Budget table contains data around budgets (i.e. one row per budget). It allows us to
see the total payments and allocations which have come out of budgets quickly. Data in
the Budget table can be matched to the Funding Overview page in SmartyGrants.

Clicking on a budget in the Funding Overview shows further information also stored in
the Budget table.

12 Financial Reporting: Worked Examples
Below are some worked examples demonstrating the selection of tables according to
reporting requirements.

“I would like to find the total amount of funding paid out to each applicant.”

 This widget would group funding by application. The Application Financials table
is most appropriate here because it sums payments/funding allocations given to
each application (i.e. one row per application). The field in the Application
Financials table that sums payments is “Application Total Amount Paid.’

 It is possible to build out the same widget using the Payment Table (because
applications receive payments, payments can be grouped by application). See
here.

 “Budget Total Amount Paid” in the Budget table is not appropriate for this widget,
because this field sums all payments from a budget (and cannot be broken down
by application)

“I would like a list of payments that have been scheduled or approved, but not yet
paid out to applications yet.”

OurCommunity.com.au – where not-for-profits go for help

Page | 22

 This widget would list individual payments in a table (i.e. one row per payment).
Only Payment table is appropriate for this, as payments are summed per
application and per budget in the Application Financials and Budget tables and
cannot be broken down individually.

“I would like to find the total amount of funding paid out from each budget in this
program.”

 This widget would group payments by budget. However, it would also group
payments by program, and budgets can run across multiple programs. Budget
table may be unsuitable for this analysis, as the field “Budget Total Amount Paid”
in this table would give the amount paid from a budget to applications in all
programs (cannot be broken down by program).

 Grouping a field from the Budget Table by “Program Name” in Program table does
not make sense and when “Limit to Budget” is applied as a widget filter, data will
appear blank. See here for an explanation if required.

 Sum “Amount Paid” from the Payment table instead, which can be grouped by
both Program and Budget tables. Payments are paid from a budget to an
application that can only belong to one program, so this sum would give an
accurate calculation of the amount paid from a budget to a specific program.

13 Financial Reporting: Troubleshooting/FAQs
How is the relationship between “Amount Paid” in the Payment table, “Application
Total Amount Paid” in the Application Financials table and “Budget Total Amount
Paid” in the Budget Period Table?

 “Amount Paid” in the Payment table contains data about individual payments
(one row per payment). The key combination of payments includes Application ID
and Budget Period ID (hidden from end user) since payments are paid to an
application and come from a budget.

 “Application Total Amount Paid” in Application Financials table groups payments
by application. If in the Payments table there are two payments worth $500
attached to Application ID APP01, in Application Financials table APP01 will have
“Application Total Amount Paid” of $1000.

 “Budget Total Amount Paid” in Budget table groups payments by budget. If in the
Payments table there are two payments worth $500 attached to Budget Period ID
of BUD01, in Budget table BUD01 will have “Budget Total Amount Paid” of $1000.

This aggregation of payments at different levels is for user convenience and maximises
the kind of financial reporting that is possible in SmartyGrants Analytics.

What is the difference between “Allocation Amount” in the Funding Allocation,
“Application Total Amount Allocated” in the Application Financials table and “Budget
Total Amount Allocated” in the Budget table?

 “Allocation Amount” in the Funding Allocation table contains data about individual
funding allocations (one row per funding allocation). The key combination of
funding allocations includes Application ID and Budget Period ID (hidden from
end user) since funding allocations are given to an application and come from a
budget.

 “Application Total Amount Allocated” in Application Financials table groups
funding allocations by application. If in the Funding Allocation table there are two
funding allocations worth $500 attached to Application ID APP01, in Application
Financials table APP01 will have “Application Total Amount Allocated” of $1000.

OurCommunity.com.au – where not-for-profits go for help

Page | 23

 “Budget Total Amount Allocated” in Budget table groups funding allocations by
budget. If in the Funding Allocation table there are two funding allocations worth
$500 attached to Budget Period ID of BUD01, in Budget table BUD01 will have
“Budget Total Amount Allocated” of $1000.

This aggregation of payments at different levels is for user convenience and maximises
the kind of financial reporting that is possible in SmartyGrants Analytics.

Why are the numbers in my widget using Payment table not as expected?

The Payments table contains payments of all statuses (e.g. scheduled, approved, returned,
paid.) When using this table, remember to filter by status or use the “amount” columns
which have been pre-filtered (e.g. “Amount Scheduled”, “Amount Approved” columns).

14 Dynamic Tables
Tables are created “dynamically” for entities where the number and name of reportable
fields varies from instance to instance. Examples include form-related data (where
instance administrators can choose the number of questions in a form and the text of
those questions) and standard fields (where instance administrators can choose the
number of standard fields to set up and the text of those standard fields).

Dynamic tables are represented in the data model diagram by white tables. A white table
indicates that there may be several of each table type in an instance’s actual data model.
In the diagram below, “Standard Fields” represents a table that is dynamically created to
capture responses to standard fields. If an instance has five categories of standard fields,
there would be five tables of this type in its data model.

The naming structure for tables can be found in the data model diagram. The name of
dynamic tables and the fields within them depends on how entities have been set up in
an instance (e.g. varying by form name, by section name.)

• For example, the naming structure for standard field tables is {Category Name}
(Standard Fields). If there is a category of standard fields in an instance called
“Historical Information”, this would translate to a table name of {Historical
Information} (Standard Fields).

Why are there sometimes multiple tables for a single form/standard section/
standard field?

Fields from a single form form/standard section/ standard field are generally split into
tables by question type (single-response vs various multi-choice type questions.) This
split across multiple tables minimises data duplication that would occur if we placed
questions/sections allowing multiple responses and questions allowing a single
response in the same table.

OurCommunity.com.au – where not-for-profits go for help

Page | 24

The following sections cover how fields are split across tables in detail, however it is not
necessary to understand how and why fields are organised to use them. You can always
find a field by searching the relevant label/name (question, section, form, standard
field category etc.) in the widget’s field selector.

15 Forms

Enabling reporting on forms

SmartyGrants Analytics facilitates reporting on responses to forms. However, data only
appears in SmartyGrants Analytics for forms which have reporting enabled (responses to
a form will not appear in SmartyGrants Analytics automatically.)

To enable reporting on a form, go to the Forms tab of SmartyGrants. Select Options for
the form you want to enable reporting on and click Enable Analytics.

Forms which were enabled for reporting then archived still appear in Analytics to allow for
reporting on historical responses.

Warning: users should only enable Analytics for forms that they need to report on (do
not enable reporting for every form.) There is a limit to each instance’s data model file
size. If the limit is exceeded, some of the oldest forms (least recently modified among
the analytics enabled forms) will be dropped from the data model to bring the file
size within the limit. The dropped forms will not appear for selection when building a
widget even if they were enabled for reporting (but more recently modified forms
will still appear.)

It is difficult to advise on the number of forms that can be
enabled for reporting since each form contains a different
number of fields. However, a warning message will appear
on the Analytics page if an instance is nearing the limit.

Refreshing data in dynamic tables

Data related to dynamic tables, including both:

 New responses

 New sections and fields/questions

are refreshed nightly (the nightly refresh window is 1am - 6am. However accounts are
enabled progressively and most accounts should complete the within an hour.) This
means if you enable analytics for a form, responses to the form will appear in
SmartyGrants Analytics the next day. If you make a change to a form for which analytics
is already enabled (e.g. removing a question, adding a standard field), these changes
will not be reflected in SmartyGrants Analytics until the next day.

OurCommunity.com.au – where not-for-profits go for help

Page | 25

What should you do when the data model size limit is exceeded?

- Review archived forms and if no longer needed for reporting, reactivate and
disable analytics

- Review current forms and disable analytics.

If you would like a list of forms which have been dropped from reporting due to
exceeding the data model size limit, please contact the SmartyGrants support team.

Form fields in the data model

When building a widget, the easiest way to find a form-related field is to simply type part
of the question label or form name into the field selector. Fields from a single form may
sometimes be split across multiple tables to minimise data duplication (which would
occur if we placed questions/sections allowing multiple responses and questions allowing
a single response in the same table.) However, it is not necessary to understand how and
why fields are organised to use them.

Form Response Table

The Form Response table contains “meta-data” on responses submitted to forms (that is,
it does not contain responses to questions in forms, but information about the responses,
such as time of submission and the form name). Please note that an applicant can submit
the same form multiple times, which would generate multiple rows in the table.

Dynamic form tables

For each form, every single-response question across all non-repeatable sections are
stored in a single main table. For each form, an additional table is created for:

• Every multi-choice question. Each table contains a single question

• Every repeatable section. Each table contains questions from a single repeatable
section

https://help.smartygrants.com.au/using-smartygrants/forms/form-elements-and-questions-types/validation-settings/#ValidationSettings-Grid&RepeatableSection

OurCommunity.com.au – where not-for-profits go for help

Page | 26

For a single form, this can generate up to four table types (with potentially several cases of
each type). The naming structure these four form table types is:

Tables for single-response questions in
non-repeatable sections

Form Name (Program Name)

e.g. Short Application Form (Sports Grants)

Tables for multi-choice questions in
non-repeatable sections

Form Name > Question Label (Program
Name)

e.g. Short Application Form > Project
Locations (Sports Grants)

Tables for single-response questions in
repeatable sections

Form Name > Section Label (Program
Name)

e.g. Short Application Form > Project
Details (Sports Grants)

Tables for multi-choice questions in
repeatable sections

Form Name > Section Label > Question
Label (Program Name)

e.g. Short Application Form > Project
Details > Budget Items (Sports Grants)

Note that responses to smart-choice questions are stored as a concatenated string in
form tables.

• If the smart-choice question came from a non-repeatable section, responses are
stored in the main table for the form containing single-response questions.

• If the smart-choice question came from a repeatable section, responses are stored
in the table containing single-response questions from the repeatable section.

Consider the example of the form named “Small Grants Form” below from the program
“Environmental Grants”:

OurCommunity.com.au – where not-for-profits go for help

Page | 27

OurCommunity.com.au – where not-for-profits go for help

Page | 28

• Responses to “Project Title” and “Short Project Description” would be stored in the
main table Small Grants Form (Environmental Grants) (the main table
containing responses to single-response questions in non-repeatable sections)

• Responses to “Project Theme” would be stored in a separate table, Small Grants
Form > Project Theme (Environmental Grants). This is because “Project Theme” is
a multi-choice question in a non-repeatable section. Note: if there was a second
multi-choice question in this non-repeatable section, another table would be
generated to store responses to that question.

• Responses to “Location” and “Date of Event” would be stored in a separate table,
Small Grants Form > Section Two (Environmental Grants). This is because these
are single-response questions in a repeatable section. Note: if there was a second
repeatable section, another table would be generated to store responses to single-
response questions in that repeatable section.

• Responses to “Budget Items” would be stored in a separate table, Small Grants
Form > Section Two > Budget Items (Environmental Grants). This is because this
is a multi-choice question in a non-repeatable section. Note: if there was a second
multi-choice question in this same non-repeatable section, another table would be
generated to store responses to that question.

My form contains a multi-choice question. Why does this field appear in multiple
tables?

As seen in the screenshot below, the multi-choice question “Project Theme” appears
both in the main Small Grants Form (Environmental Grants) table (storing single-
response questions from non-repeatable sections) and in a stand-alone table.

In the stand-alone table, every choice/answer is separated out into a separate row. See
here for an example of how multi-choice questions where the option of “other” is
enabled appear.

Responses are also stored in a concatenated form in the main table (storing single-
response questions from non-repeating sections), where all choices are combined in a
string separated by “;”.

OurCommunity.com.au – where not-for-profits go for help

Page | 29

Storing this response data in different forms allows for different kinds of analysis (for
example, having choices separated out into rows allows for grouping and slicing other
data). Note that this storage of multi-choice questions in two different forms applies
also to multi-choice questions in repeatable sections. In this case, the concatenated
field is stored in the table containing single-response questions from the repeatable
section.

16 Standard Fields
Standard fields are organised in the data
model by category. If you are not familiar
with standard fields and categories, please
see the Help Hub.

Standard fields do not need to be turned
on for reporting the way forms do and are
available in Analytics by default. For
example, since Project Essential Details is a
default standard field category, the table

Project Essential Details (Standard Fields) will always be created in the data model.

When building a widget, the easiest way to find a standard field it to simply type part of
its label into the field selector. It is not necessary to understand how and why fields are
organised to use them.

Please note archived standard fields are not included in reporting.

If a form contains a standard field, what is the difference between the response
stored in the standard field table and the response stored in the form table?

If a form contains a standard field, it will be stored both in a form table and in a
standard field table. Think of the form table version as a “point in time” record of how
someone filled out a standard field, while the standard field version captures the latest
response to that standard field.

Consider the standard field below “Brief Project Description,” which was added to the
form “Small Grants Form.”

https://help.smartygrants.com.au/using-smartygrants/forms/standard-fields/

OurCommunity.com.au – where not-for-profits go for help

Page | 30

If when filling out that form, an applicant answered this standard field as “This is a
project description,” the field in Small Grants Form (Environmental Grants) will record
“This is a project description.” Standard fields as recorded in form tables can be
reconciled to the application/assessment/ acquittal/ administration tabs in an
application depending on the form type.

If an account administrator later enters the Applications tab of SmartyGrants and edits
this applicant’s standard field response to “This is an amended project description” (or
the applicant answers the same standard field differently in another form), the field in
Project Essential Details (Standard Fields) will record “This is an amended project
description” (but the value in Small Grants Form (Environmental Grants) will remain
‘This is a project description.”) Data in standard field tables can be reconciled with the
standard field tab of applications.

Recall that fields in standard field tables capture the latest responses to standard fields,
while fields in form tables capture “point in time” responses. This means the latest
responses to standard fields will always be reportable by default, but you will need to
turn on forms to report on those “point in time” responses.

OurCommunity.com.au – where not-for-profits go for help

Page | 31

In the above example, if Small Grants Form was not enabled for Analytics, the table
Project Essential Details (Standard Fields) would still exist and will have a row for
Application 00001 recording “This is amended project description.” If the form was
subsequently enabled for analytics, the table Small Grants Form (Environmental
Grants) would be created, recording “This is a project description.”

Single-response standard fields within a category will be stored a main table (one table
per category). If a category contains any multi-choice standard fields, responses to these
will all be stored in separate, stand-alone tables (one table per multi- choice standard
field, similar to form fields). If a category contains any smart choice fields, responses to
these will also be stored in separate stand-alone tables (every smart-choice field
generates a waterfall hierarchy of up to five tables. See the next section on Smart Choice
Standard Fields for more information.)

As an example, consider the following standard field category “Branding” which contains
two single-response questions “Slogan” and “Audience Size”, a multi-choice question
“Social Media Accounts” and a smart choice question “Logo Colours.”

These standard fields have been filled out for the Application 0001.

https://help.smartygrants.com.au/using-smartygrants/forms/standard-fields/

OurCommunity.com.au – where not-for-profits go for help

Page | 32

Responses to the two single-response questions “Audience Size” and “Slogan” are stored
in the main table for the standard field category, Branding (Standard Fields). For every
multi-choice and smart choice question in a standard field category, Branding (Standard
Fields) also contains a corresponding field that concatenates responses to a given
question for that row.

The multi-choice and smart-choice questions “Logo Colours” and Social Media Accounts”
are stored in separate stand-alone tables.

OurCommunity.com.au – where not-for-profits go for help

Page | 33

Consider the difference between using the concatenated “Social Media Accounts” field
from the main Branding (Standard Fields), compared to the “Social Media Accounts” field
from the stand-alone Branding > Social Media Accounts (Standard Fields) table which
splits responses into separate rows.

OurCommunity.com.au – where not-for-profits go for help

Page | 34

The next section goes into the various tables that are generated for a single smart-choice
question.

17 Smart Choice Standard Fields
Responses to a single smart choice standard field are split across up to five separate
tables, representing the hierarchical nature of smart choice responses. Please refer to the
Help Hub if you are not familiar with smart choice lists and their layered hierarchy, which
allow applicants to select a choice from a set list where each choice may be grouped
under or belong to a parent choice.

If an instance utilises multiple smart choice standard fields, each standard field generates
a separate hierarchy of up to five tables.

The easiest way to understand how smart choice fields are stored in the data model is
through an example. An example of a smart choice response could be to the question
“Logo Colours”, which asks the user to select colours. Colours can be nested under
umbrella colours.

If an application selects “Turmeric”, this is a Level 3 choice with “Turmeric” nested under
the hierarchy “Colours > Yellow > Gold > Turmeric”. In that hierarchy, “Turmeric” is nested
under the Level 2 choice “Gold”, which is nested under the Level 1 choice “Yellow” which is
nested under the non-selectable category “Colours”.

https://help.smartygrants.com.au/using-smartygrants/account-settings/applications-&-contacts/choice-lists/smart-choice-lists/
https://help.smartygrants.com.au/using-smartygrants/account-settings/applications-&-contacts/choice-lists/smart-choice-lists/

OurCommunity.com.au – where not-for-profits go for help

Page | 35

Every smart choice standard field dynamically generates a “summary” table that shows
response values in their hierarchy (through a concatenated string), in addition to up to
four “level” tables that split out that hierarchy.

• In the reporting tool, searching for “Logo Colours” shows five different tables
besides the main Branding (Standard Fields) table: one for each level in the smart
choice hierarchy (each with one field “Category”, “Level 1”, “Level 2”, “Level 3”
respectively), and the summary table (with fields “Selected Value” and “Selected
Value Level”).

Consider two applications with the following standard field choices. APP02 selected the
Level 3 choice “Turmeric” (also selecting a Level 2 choice “Scarlet”.) APP01 selected the
Level 2 choice “Gold” and did not drill down to a level 3 selection.

Below is a widget using fields from the summary Branding > Logo Colours (Standard
Fields) table. Summary smart choice tables follow the naming structure {Standard Field
Category} > {Question Label} (Standard Fields).

• “Logo Colours” (the name of this field is dynamic depending on the label of the
smart choice question) shows values concatenated in their layered hierarchy

o APP01: Colours > Yellow > Gold
o APP02: Colours > Yellow > Gold > Turmeric

• “Selected Value” gives the lowest level value that the response drilled down to
o APP01: Gold
o APP02: Turmeric

• “Selected Value Level” gives the level that the response drilled down to
o APP01: Level 2
o APP02: Level 3

OurCommunity.com.au – where not-for-profits go for help

Page | 36

Fields from the level tables break down the layered selection. These tables have the
naming structure {Standard Field Category} > {Question label} {Level} (Standard Fields).
For example, APP02’s selection of Colours > Yellow > Gold > Turmeric has:

• “Turmeric” for the field “Level 3” from Branding > Logo Colours Level 3 (Standard
Fields)

• “Gold” for the field “Level 2” from Branding > Logo Colours Level 2 (Standard Fields)
• “Yellow” for the field “Level 1” from Branding > Logo Colours Level 1 (Standard

Fields)
• “Colours” for the field “Category” from Branding > Logo Colours Category

(Standard Fields)

Since APP01’s selection was at Level 2 and did not drill into Level 3, it has “Undefined” for
the field “Level 3” from Branding > Logo Colours Level 3 (Standard Fields)

Use the level tables to group data by different smart choice levels. The below chart uses
“Level 1” from Branding > Logo Colours Level 1 (Standard Fields) to aggregate the amount
allocated to applications that selected different Level 1 values.

The below chart uses “Level 3” from Branding > Logo Colours Level 3 (Standard Fields) to
aggregate the amount allocated to applications that selected different Level 3 values.

Warning: Smart Choice Templates need to contain only non-overlapping
hierarchies

SmartyGrants smart choice templates are designed for non-overlapping hierarchies,
where a choice can only ever be nested under a single choice at the higher level.

OurCommunity.com.au – where not-for-profits go for help

Page | 37

An example of a non-overlapping hierarchy could be Food Group > Sub-group, where
the choices for Food Group are “Animal-based” and “Plant-based”. Sub-Group choices
nested under “Animal-based” are “Meats and Poultry”, “Dairy” and “Fish.” Sub-Group
choices nested under “Plant-based” are “Fruits” and “Vegetables.” Under this hierarchy,
selecting “Fruits” implies only one possible Food Group.

An example of an overlapping hierarchy could be Seniority > Gender, where the choices
for Seniority are “Executive”, “Middle Management” and “Junior.” All three of these
Seniority groups nest the Gender options of “Woman”, “Man” or “Other”. Under this
overlapping hierarchy selecting “Man” implies multiple possible seniorities.

Inputting overlapping hierarchies into a smart choice template may lead to duplication
(inflated figures) in the reporting tool. This duplication can be resolved through a
calculated field in the widget builder, but orthodox hierarchies are encouraged to
minimise unexpected results.

Note that in smart choice templates “Choice Category”, “Level 2” and “Level 3” columns
are optional. If they are not utilised, the corresponding tables will not be created in the
data model. For example, if “Logo Colours” used a Smart Choice List that only had the
mandatory “Level 1” column filled out, in the data model only the summary and Level 1
table would be created.

18 Standard Sections
In the data model, each standard section is represented in its own dynamic table. If a
standard section contains any multi-choice questions, these will all be stored in separate,
stand-alone tables (one table per multi-choice question, similar to form fields). If a
standard section contains any smart-choice questions, these will all be stored in separate,
stand-alone tables (one waterfall hierarchy of tables per smart choice question, similar to
smart-choice standard fields).

When building a widget, the easiest way to find a field from a standard section is to
simply type the section label or the label of the question into the field selector. It is not
necessary to understand how and why fields are organised to use them. If you are not
familiar with standard sections and their grid structure, please see the Help Hub.

Consider the example of a standard section below “Volunteer Information,” which
contains two single-response questions and one multi-choice question.

https://help.smartygrants.com.au/using-smartygrants/outcomes-engine/standard-sections/

OurCommunity.com.au – where not-for-profits go for help

Page | 38

The two single-response questions in the section (“Branch Location” and “Number of
Volunteers”) would be stored in the section’s main table called Volunteer Information
(Standard Section).

• For every multi-choice and smart choice question in a standard section, the main
standard section table contains a corresponding field that concatenates responses
to a given question for that row. Using the “Contact Methods” field from Volunteer
Information (Standard Section) would look like:

The multi-choice question “Contact Methods” generates a separate table Volunteer
Information > Contact Methods (Standard Section). Using the “Contact Methods” table
from this table shows that this field separates choices out, rather than concatenating.

OurCommunity.com.au – where not-for-profits go for help

Page | 39

Similar to standard fields, standard section tables capture the latest responses to
standard sections, while fields in form tables capture “point in time” responses (“point in
time” responses to standard sections in forms are stored as repeatable sections.)

Standard sections share several other reporting characteristics as standard fields:

• Standard sections do not need to be turned on for reporting and are available in
Analytics by default.

• Archived standard sections are not included in reporting.

Warning: be careful when combining fields from multiple sections (whether
repeating or standard sections) in a single widget
It is not recommended to combine fields from multiple sections in a single widget. This
includes combining fields from multiple standard sections in a single widget and
combining fields from a standard section and a repeating section in a single widget.

If an application_id has multiple rows in one or all sections, the join on application_id
creates all possible permutations of values for fields used in the widget. This join can
lead to misleading/nonsensical joining and duplication of values.

For example, in a table widget there would be a duplication of values across rows of the
table (as well as potentially a misrepresentation that values from different sections are
related to each other.)

Consider the two example standard sections “Areas of Expertise” and “Volunteer
Information.”

When fields from both standard sections are used in a single widget, duplication of
values occurs. The result may also suggest that the number of volunteers is related to an
area of expertise, which may not be true.

OurCommunity.com.au – where not-for-profits go for help

Page | 40

19 Dynamic Tables: Troubleshooting/FAQs

Form FAQs

When building a widget, I can’t find the
field for a question in a form. What should
I do?

First, make sure analytics is enabled for the
form. If analytics is enabled, open the form
editor to check the label of the question or
the label of the section that the question is
from if the question is from a repeatable
question. Labels can be distinct from
question text/ section name and are used to
generate the names of dynamic tables.

For fields from forms to be located, these
labels should be intuitive to allow for easy
searching. Once you have set your labels,
you can simply type them into the field
selector when building a widget to narrow
the search.

Why are there fields which end in “Details”?

If a multi-choice question allows users to select “Other” and input a free text response, the
free-text response is stored in a field that is the question label followed by “Details”.

For responses where an applicant did not select “other”, the choice is repeated in the
“Details” column.

OurCommunity.com.au – where not-for-profits go for help

Page | 41

Why do some applications disappear from the widget when I use a field from a form
table?

When using a field from a form table, the widget will automatically filter down to
applications that have submitted that form.

On the left using “Application ID” from the Application table would generate a list of all
Application IDs. On the right, a field from an assessment form is added to the widget,
reducing the number of Application IDs appearing in the widget to those which had the
assessment form submitted.

This filtering of Application IDs occurs because form tables only contain data for
applications that have submitted forms (an inner join between form tables and other
tables therefore excludes some Application IDs.)

Why do no results appear when I try to combine fields from multiple forms in a single
widget?

It is not possible to combine fields from multiple forms in a single widget (besides fields
within the static Form Response table.) This is because form tables contain a hidden
response_id field that is unique for every response to a form, making joins between form
tables impossible. However, you can include fields from different forms in separate
widgets and combine them within a single dashboard.

Standard Field and Standard Section FAQs

I combined fields from two standard sections in a widget and the widget does not
look as expected (too many rows, duplicated values etc.) What happened?

It is not recommended to combine fields from multiple standard sections in a single
widget. See here for an explanation why.

OurCommunity.com.au – where not-for-profits go for help

Page | 42

I combined fields from a standard section and a repeating section (from a form) in a
widget and the widget does not look as expected (too many rows, duplicated values
etc.) What happened?

It is not recommended to combine fields from a standard section and a repeating section
(in a form) in a single widget. See here for an explanation why.

Why do some applications disappear from the widget when I use a field from a multi-
choice or smart-choice table (any table branching off a main standard section or
main standard field table?)

When using a field from a multi-choice or smart-choice table, the widget will
automatically filter down to applications that have filled out the standard field/ filled out
the standard section the question is from.

The image below uses “Application ID” from the Application table and the field “Branch
Location” from the main “Volunteer Information” standard section table. This generates a
list of all Application IDs. Applications that do not have the “Volunteer Information”
Standard Section filled out have “N/A” for “Branch Location.”

On the right, the multi-choice field “Contact Methods” which is stored in a separate table
is added to the widget, reducing the number of Application IDs appearing in the widget
to those which have the “Volunteer Information” Standard Section filled out.

OurCommunity.com.au – where not-for-profits go for help

Page | 43

The filtering out of application IDs occurs because the multi-choice/smart-choice tables
only contain data for applications with the standard field/standard section in question
filled out (an inner join between these tables and other tables therefore excludes some
Application IDs.)

20 Outcomes Engine Reporting
Tables related to the Outcomes Engine will only appear for instances which have the
Outcomes Engine turned on. If you are not familiar with the Outcomes Engine and
Outcomes Engine default standard sections, please see the Help Hub.

Outcomes Engine Standard Sections

Outcomes Engine default standard sections (e.g. Grantmaker Metrics, Activities) are
dynamically created in the data model as any other standard section, and can simply be
searched for in the field selector when creating a widget.

Grantmaker domain, outcome and metric selections stored in tables ending with
“(Standard Section)” will be in a concatenated form following the structure domain >
outcome > metric. In the example below, a value from “Grantmaker Outcome” in
Outcomes (Standard Section) is “Community Connection > Increased belief in the value of
community arts”, where “Community Connection” is a domain housing the outcome
“Increased belief in the value of community arts.”

https://help.smartygrants.com.au/using-smartygrants/outcomes-engine/standard-sections/

OurCommunity.com.au – where not-for-profits go for help

Page | 44

In the example below, a value from “Grantmaker Metric” in Grantmaker Metrics (Standard
Section) is “Community connection > Increased sense of belonging > Number of arts
program participants who reported that they have now made new friends.” “Community
Connection” is a domain housing the outcome “Increased sense of belonging”, which in
turn houses the metric “Number of arts program participants who reported that they
have now made new friends.”

Static Outcomes Tables

If you would like to group data by domain/outcome/metrics, or access
domain/outcome/metric data in a non-concatenated form, the data model contains four
static tables for these purposes:

• Outcomes Framework (containing the field “Framework Name”)
• Domain (containing the field “Domain Name”)
• Grantmaker Outcome (containing the field “Grantmaker Outcome Name”)
• Grantmaker Metric (containing the field “Grantmaker Metric Name”)

OurCommunity.com.au – where not-for-profits go for help

Page | 45

Creating a widget with these table shows the difference between
framework/domain/outcome/metric selections in these tables, and corresponding fields
in standard section tables.

• Grantmaker Metric (Standard Section) stores a metric as “Community connection
> Increased sense of belonging > Number of arts program participants who
reported that they have now made new friends.”

• The static tables split the domain, outcome and metric components out into
“Community connection” in Domain Name, “Increased sense of Belonging” in
Grantmaker Outcome Name, and “Number of arts program participants who
reported that they have now made new friends” in Grantmaker Metric Name
respectively.

If an outcomes framework does not make use of domains (which are optional), outcomes
will be attached to a domain “Undefined.” Grantseeker Outcomes not linked to a
grantmaker outcome in the “Outcome OE” standard section are linked to a domain “Not
selected” and a grantmaker outcome “Not selected.”

Use the static tables to group data, such as financial data. The widget below uses
“Grantmaker Outcome Name” from the Grantmaker Outcomes table to find the total
amount paid to applications that selected a given grantmaker outcome.

OurCommunity.com.au – where not-for-profits go for help

Page | 46

Warning: Using fields from “Grantmaker Metrics” in a widget will cause any
domains/outcomes without any metrics/ whose metrics have not been selected to
be omitted from the widget.

The widget below shows the domains “Artistic training and development” and
“Community connection”.

However, when the field “Grantmaker Metric Name” is added to the widget the
outcomes from these two domains disappear. This occurs either because the outcomes
framework did not include metrics for these domains/outcomes OR no applicants
selected the metrics associated with these domains/outcomes.

Besides domain/outcome/metric selections, the static tables contain several other fields
to facilitate outcomes-related analysis. In general, it is possible to use fields from the static
outcomes tables to group fields from any table which contains “Application ID” in its key
or key combination. However, under certain conditions some of these fields should only
be used with specific tables. Below contains a guide on using these field correctly.

Negative analysis (unselected domains/outcomes/metrics)

OurCommunity.com.au – where not-for-profits go for help

Page | 47

By default, the static outcomes tables will exclude
frameworks/domains/outcomes/metrics which were added to a round but which have
not been selected by any application. Including unselected
frameworks/domains/outcomes/metrics in a widget is referred to as “negative analysis”.

To include unselected frameworks/domains/outcomes/metrics in a widget, set “Limit to
Application” to equal “0” or “1” (instead of the usual default “1”). In the widget below, the
outcomes “Increased advocacy for animal welfare improvements and habitat protection”
and “Increased choice and empowerments” are not associated with funding because no
applications have selected these outcomes.

Removing “0” from the Limit to Application filter causes “Increased advocacy for animal
welfare improvements and habitat protection” and “Increased choice and
empowerments” to be excluded from the widget.

Warning: Negative analysis is only available with fields that are compatible with a
Limit to Application widget filter.

In other words, it is possible to use the static outcomes tables to group fields from any
table which contains “Application ID” in its key or key combination (e.g. Funding
Allocation or Payments.) However, it is not possible to show unselected
frameworks/domains/outcomes/metrics when grouping fields from Funding Allocation
or Payments because aggregating fields from those tables would require a Limit to
Funding Allocation or Limit to Payments filter. See this section for a reminder on Limit
to filters.

“Outcomes Engine Application Count”

OurCommunity.com.au – where not-for-profits go for help

Page | 48

Warning: if counting applications (which have selected a domain/outcome/metric)
and implementing negative analysis, aggregate the field “Outcomes Engine
Application Count” from the Outcomes Framework table.

The field “Outcomes Engine Application Count” in the Outcomes Framework table can
be used in place of Database Application/Application ID when counting the number of
applications using a framework/domain/outcome/metric. In general, Database
Application/Application ID can still be used with outcomes-related tables. The
exception is when implementing negative analysis, which is when “Outcomes Engine
Application Count” must be used.

In other words, if your widget has a “Limit to Application” set to equal “0” or “1” and you are
counting applications, total “Outcomes Engine Application Count” rather than count
distinct Database Application IDs.

• This is because, in the background, negative analysis involves a placeholder
application representing “unselected” whose id is set to “-1” (leading to a count of
applications being inflated by one.)

Warning: “Outcomes Engine Application Count” should not be grouped by fields
where an application can be associated with more than one value (e.g. fields from
“Funding Allocation” since an application can have multiple funding allocations,
multi-choice question tables, repeating section tables.) In these instances, it is
preferable to simply use a count of distinct Application IDs (in which case negative
analysis is not possible.)

This is because every application is assigned “1” for “Outcomes Engine Application
Count”. Fields where an application can have multiple values (e.g. multiple funding
allocations, multiple payments) would lead to duplication when totalling “Outcomes
Engine Application Count”.

You can also use “Outcomes Engine Application Count” to filter data in widgets (including
widgets using no fields from outcomes-related tables) to applications which have used
the Outcomes Engine (that is, answered an Outcomes Engine standard section.) To do
this, use “Outcomes Engine Application Count” as a widget filter and filter for “1”.

OurCommunity.com.au – where not-for-profits go for help

Page | 49

21 CLASSIE
If you are not familiar with CLASSIE, which allows applicants to select a project
subject/beneficiary from a set list where each choice may be grouped under or belong to
a parent choice, please see the Help Hub.

The CLASSIE standard fields “Project Beneficiaries” and “Project Subject” generate two
separate waterfall hierarchies of five tables respectively, similar to Smart Choice Standard
Fields.

https://help.smartygrants.com.au/using-smartygrants/classie/

OurCommunity.com.au – where not-for-profits go for help

Page | 50

The easiest way to understand how CLASSIE fields are stored in the data model is through
an example.

If an application selects their Project Subject as “Forest management”, this is a Level 4
choice with “Forest management” nested within a hierarchy “Environment > Biodiversity
> Forest preservation > Forest management”. In that hierarchy, “Forest management” is
nested under the Level 3 choice “Forest preservation”, which is nested under the Level 2
choice “Biodiversity”, which is nested under the Level 1 choice “Environment”.

OurCommunity.com.au – where not-for-profits go for help

Page | 51

In the reporting tool, searching for “Project Subject” shows five different tables: one for
each level in the CLASSIE hierarchy (each with the field “Level 1”, “Level 2”, “Level 3” and
“Level 4” respectively) and a summary table (simply named CLASSIE Project Subject).

Below shows that selecting “Project Subject” from the CLASSIE Project Subject summary
table shows selections in their layered hierarchy.

In contrast, fields from the level tables break down the layered selection. In this selection,
“Environment > Biodiversity > Forest preservation > Forest management” generates:

• “Forest management” for the field “Level 4” from CLASSIE Project Subject Level 4
• “Forest preservation” for the field “Level 3” from CLASSIE Project Subject Level 3
• “Biodiversity” for the field “Level 2” from CLASSIE Project Subject Level 2
• “Environment” for the field “Level 1” from CLASSIE Project Subject Level 1

The application’s second selection of “Education > Adult Education” did not drill down
beyond Level 2, so is given “Undefined” for the fields “Level 3” and Level 4”.

OurCommunity.com.au – where not-for-profits go for help

Page | 52

Use the level tables to group data by different smart choice levels. The below chart uses
“Level 2” from CLASSIE Project Subject Level 2 to aggregate the amount allocated to
applications that selected different Level 2 values.

While examples in this section covered Project Subject, the same information
applies for Project Beneficiaries.

The only difference is that Project Beneficiaries replace Level 1 with Category, drilling
down progressively to Level 1, Level 2 and Level 3.

OurCommunity.com.au – where not-for-profits go for help

Page | 53

The summary CLASSIE Project Subject table and the CLASSIE Subject Level 1 table
contain several other fields to facilitate analysis (they are split across these two reasons for
data modelling purposes).

Selected Value + Selected Value Level

“Selected Value” gives the lowest level value that a CLASSIE response drilled down to.
“Selected Value Level” gives the level number that a CLASSIE response drilled down to.

• For the example “Environment > Biodiversity > Forest preservation > Forest
management”, “Selected Value” gives “Forest Management” and “Selected Value
Level” gives “Level 4”.

• If another application selected “Environment > Biodiversity > Forest preservation”,
“Selected Value” would give “Forest preservation” and “Selected Value Level”
would give “Level 3.”

Negative Analysis (unselected subjects/beneficiaries)

OurCommunity.com.au – where not-for-profits go for help

Page | 54

By default, the reporting tool will exclude subjects/beneficiaries which were added to a
round but which have not been selected by any application. To include unselected
subjects/beneficiaries in a widget, set “Limit to Application” to equal “0” or “1” (instead of
the usual default “1”). In the widget below, “Animal Welfare” and “Arts and Culture” do not
have any associated funding because no applications selected these project subjects.

Removing “0” from the Limit to Application filter causes “Animal Welfare” and “Arts and
Culture” (and all other unselected subjects) to be omitted from the widget.

Warning: Negative analysis is only available with fields that are compatible with a
Limit to Application widget filter.

In other words, it is possible to use CLASSIE tables to group fields from any table which
contains “Application ID” in its key or key combination (e.g. Funding Allocation or
Payments.) However, it is not possible to show unselected projects/beneficiaries with
fields from Funding Allocation or Payments because aggregating fields from those
tables would require a Limit to Funding Allocation or Limit to Payments filter. See this
section for a reminder on Limit to filters.

“Beneficiary Application Count”/ “Subject Application Count”

OurCommunity.com.au – where not-for-profits go for help

Page | 55

In other words, if your widget has a “Limit to Application” set to equal “0” or “1” and you are
counting applications, total “Subject Application Count”/ “Beneficiary Application Count”
rather than count distinct Database Application IDs. This is because, in the background,
negative analysis involves artificially counting an application whose id is set to “-1” (leading
to a count of applications being inflated by one.)

Warning: “Beneficiary Application Count”/ “Subject Application Count” should not
be grouped by fields where an application can be associated with more than one
value (e.g. fields from “Funding Allocation” since an application can have multiple
funding allocations, multi-choice question tables, repeating section tables.) In
these instances, it is preferable to simply use a count of distinct Application IDs (in
which case negative analysis is not possible.)

This is because every application is assigned “1” for “Beneficiary Application Count”/
“Subject Application Count”. Fields where an application can have multiple values (e.g.
multiple funding allocations, multiple payments) would lead to duplication when
totalling “Beneficiary Application Count”/ “Subject Application Count”.

Autoclassification Flag

“Auto Classification Flag” can be used to identify responses that were manually input by
applicants versus auto-classified by the CLASSIEfier tool.

Warning: if counting applications (which have selected a project/beneficiary) and
implementing negative analysis, aggregate the field “Subject Application Count”/
“Beneficiary Application Count”.

The field “Beneficiary Application Count”/ “Subject Application Count” can be used in
place of Database Application/Application ID when counting the number of
applications which selected a beneficiary/subject. In general, Database
Application/Application ID can still be used, however, as described in below, the
exception is when implementing negative analysis, which is when “Beneficiary
Application Count”/ “Subject Application Count” must be used.

OurCommunity.com.au – where not-for-profits go for help

Page | 56

